
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

A new mean field SA-SA' critical point in a symmetry breaking field
Youngah Parka; T. C. Lubenskyb; J. Prost
a Department of Physics, Postech, Pohang Institute of Science and Technology, Pohang, Korea b

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.

To cite this Article Park, Youngah , Lubensky, T. C. and Prost, J.(1989) 'A new mean field SA-SA' critical point in a
symmetry breaking field', Liquid Crystals, 4: 4, 435 — 440
To link to this Article: DOI: 10.1080/02678298908035490
URL: http://dx.doi.org/10.1080/02678298908035490

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678298908035490
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1989, VOL. 4, No. 4, 435-440 

A new mean field S,-S,, critical point in a symmetry breaking field 

by YOUNGAH PARK 
Department of Physics, Postech, Pohang Institute of Science and Technology, 

P.O. Box 125 Pohang, 680 Korea 

T. C. LUBENSKY 
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 

19104, U.S.A. 

and J. PROST 
ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France 

(Received 10 August 1988; accepted J October 1988) 

We consider a SA-SA. critical point in the presence of a symmetry-breaking 
external magnetic (electric) field with a positive magnetic (dielectric) anisotropy 
or a dislocation layer. Via a renormalization group analysis of the model 
hamiltonian, we show that the upper critical dimensions below which mean-field 
theory breaks down is d,. = 2.5. Thus the SA-SA. transition in three dimensions 
becomes mean-field like in the presence of a symmetry-breaking field. We estimate 
the reduced temperature region where we can expect to see the mean field SA-SA. 
critical point in the presence of a magnetic field or a dislocation layer. 

The smectic (S,) liquid crystal phase is a one-dimensional solid with a density 
modulation in the direction parallel to the equilibrium director no (z-axis). Recently, 
extensive theoretical [ I ]  and experimental [2] studies of so-called ‘frustrated smectic 
liquid crystal phases’, which are composted of strongly polar molecules, have revealed 
a large number of S, phases. In particular, there are the linear S,, , SAd, and S,, phases 
where the indices I ,  d, and 2 indicate that the wavelength of the periodic modulation 
is one, d(l < d < 2), or two times the molecular length 1. The associated wave- 
number of the modulation is, respectively, qo = 271/1, 27c/df and 27c/21, in the three 
cases. 

Phase transitions between these SA phases are of some interest and need further 
comment. There can be a first order transition in which there is a discontinuous 
change in q,, from q: to q i  (e.g. an S,,-S, or S,,-S,, transition) as well as second 
order transitions in which the amplitude t,hkl of the mass density at  wavenumber 
k ,  = 2n/21 grows continuously from zero. In the former case, as in the liquid-gas 
transition, the identical macroscopic symmetry of SA phases allows the first order 
transition line to terminate in a critical point, as shown in the figure, where the 
difference q,, = q; - q i  in the wavenumber goes to zero. Such a critical point 
provides a continuous path between coexisting SAl (or S,,) and S,, phases. 

This S,-SA. critical point, C was predicted theoretically by Barois et al. [3] and 
observed in a series of experiments by Shashidhar et al. [4] in the binary phase diagram 
of (1 lOPCBOB/90BCB). Previous experiments [5] providing evidence for its possible 
existence were not conclusive [5]. Alternatively, the first order SA-S,. transition line 
can terminate on a closed re-entrant nematic domain [6]. Prost and Toner [7] predicted 
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Phase diagram showing the SA-SA. critical point C. The two smectic phases (denoted by A and 
A‘ in the figure) coexist along a line in the concentration (or pressure)-temperature plane 
terminating at the critical point C. 

the existence of both a ‘nematic island in a smectic sea’ and a SA-SA. critical point 
using a dislocation loop theory of the SA-N transition. Park et al. [8] developed a 
nonlinear elastic model to describe the SA-SA’ critical point and found that this critical 
point belonged to a new universality class with an upper critical dimension, d, of 6 (as 
opposed to d, = 4 for the liquid-gas critical point). 

In this paper, we consider the SA-SA’ transition in the presence of a symmetry 
breaking magnetic (electric) field with positive magnetic (dielectric) anisotropy. The 
Landau-Ginzburg-Wilson Hamiltonian describing this transition as a function of the 
displacement variable u(x) of the smectic layers can be expressed as 

Here, H,,[u(x)] is the nonlinear elastic energy of elastic deformations in smectic A 
phases which has the following form: 

H[u(x)l = ~sIn[u(x)l + HI. (1) 

1 1 1 
2 3! H(u) = ddx{hE(u) + - BE’(u) + - WE3(U) + -& vE4(u) 

( 2 )  
s 
+ 3 [K ,  (v: u)’ + K2 (VS u)’ + 2K,, (V, v ,  u)’ I}. 

with 
E[u(x)] = V,u + f(Vu)’ (3) 

H I  [u] is the symmetry breaking hamiltonian arising from an external magnetic H or 
electric field E. It is expressed as 

H I  = jddxB,,(V,u)2 (4) 

where Bzo = x,HZ (&,E2) with x, > 0 (E, > 0). Since the independent variable is u(x) 
not E[u(x)], it is convenient for future analysis to re-express H[u(x)] in terms of V,u 
and V,u 

H = j ddx{h(Vzu)  + p3,(V,u)’ + 3B2(V,U)2 

+ ) [K , (v :u )*  + K?(V,2U)’ + 2K12(VzV1u)’] 

+ - wl(Vzu)’ + 2 w2(V,u) (v ,~ )*  + ; vl(v24)4 
1 1 1 
3! 
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where 

B, = B + h, w1 = w + 3B, V ]  = v + 6~ + 3B, 

B2 = h + B20, w2 = B, v2 = 3B, 

vI2 = 3~ + 3B. 

This is the hamiltonian we will use in the remainder of this paper. (Note that B, # 0 
even in the absence of the symmetry breaking external field (h = O ) . )  

As discussed in [S] the order parameter for the SA-SA' transition is M, = (V,u). 
If V, u = 0 in equation (5 ) ,  the resulting hamiltonian in terms of V,u alone is identical 
in form to that describing the liquid-gas transition as a function of its scalar order 
parameter 4 = n ,  - n g ,  the difference in densities of the liquid and gas phases. Thus, 
in mean-field theory, the SA-SA, transition occurs at h = B, = w ,  = 0 and is identi- 
cal to the liquid gas transition. 

Mean field theory is valid above an upper critical dimension d, below which 
fluctuations become important. In the LGW hamiltonian describing the liquid gas 
transition, there is a single third order potential which can be removed by shifting the 
order parameter. The upper critical dimension d, = 4 is, therefore, the dimension at 
which the fourth order potential becomes relevant. There are two third order poten- 
tials in the hamiltonian (equation (5)) describing the SA-SA, transition. In the absence 
of an external symmetry breaking field (B20 = 0),  the mean field propagator is 
proportional to VP4 at the critical point (since h = B1 = 0). The SA-SA' critical point 
is thus described by renormalization group transformations that leave the coefficients 
of (Viu)', ( V ~ U ) ~  and (Viu)(Viu)  invariant. For d > d,, u(q), the Fourier transform 
of u(x), then transforms as u(q) -+ bdP4u(bq), and the potentials w, and w2 transforms 
as W ;  = b - ( d - 6 ) / 2 ~ l  and W; = b - ( d - 6 ) / 2 ~ 2 .  Thus both w1 and w2 become relevant for 
d < 6 .  At the liquid gas transition, there is a single third order potential that can be 
removed by shifting the order parameter [9]. It is impossible to remove both potentials 
w, and w2 at the S,-SA' critical point via a shift of the order parameter. The upper 
critical dimension for the SA-SA, transition in the absence of external fields is, 
therefore, 6 and not 4 as the analogy with the liquid gas transition would indicate. The 
properties of this very complex critical point were analysed in an &-expansion about 
six dimensions in [S]. 

In the presence of external fields, Bz0 is non-zero, and the rescaling of lengths 
parallel and perpendicular to the smectic layers is different even for d > d,. To find 
d,,  we will now determine the renormalization group recursion relations to zero loop 
order for B2 # 0. At the critical point, B, = 0, and we rescale to keep B20 and K ,  
constant. Under the transformations 

we have 
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When d < d,, B, and K ,  should be constant under the above transformations. This 
requires p,, = - f + pi where pi and q1 are zero ford > d, and of order E = d, - d 
for d < d, .  With this choice for pi we find to zero loop order 

I 

I 
These equations are sufficient to determine the upper critical dimension. One loop 
corrections are needed to determine exponents to first order in d, - d. All other 
potentials (e.g. v12) are more irrelevant than those displayed. The important result of 
these equations is that, because of the anisotropic rescaling imposed by the external 
potential, the third order potentials wI and w2 are no longer of equal relevancy. w ,  
becomes relevant at d = 5 whereas w2 and v ,  become relevant at d = 3. The relevant 
potential (for d < 5) w, can be removed, as in the liquid-gas case, by shifting the order 
parameter. The upper critical dimension is thus d, = 2.5 rather than six (the B,, = 0 
result) or 3.5 (the dimension at which wl becomes relevant). This means that physical 
systems in three dimensions will exhibit a mean field transition when B,, # 0. For 
d = 2.5 - E the critical point will be in a new universality class with v: - (w:), N E .  

We now estimate the reduced temperature t ( H )  at which crossover from sym- 
metric critical to asymmetric mean-field behaviour occurs. Mean field behaviour sets 
in when the xuH2(V, u), contribution to the free energy exceeds the K ,  (V: u)' contri- 
bution to the free energy, i.e. when 

xoH2 > K , L 2 ,  (10) 

51 = t - " " f ( Y ( H ) / f 9  (1 1) 

where t1 is the perpendicular coherence length. In the vicinity of H = 0, it scales as 

where y ( H )  = xz H*/K,  4:; is a unitless measure of the strength of the external field 
and ti0 % lOA is a bare correlation length. 4 is the crossover exponent associated 
with B2,. Rotational invariance leads [8] to 4 = f l  where p is the order parameter 
exponent. To first order in E = 6 - d, /3 < 2v,. Thus equation (10) and (1 1) deter- 
mine the reduced critical-to-mean-field crossover temperature, T ( H )  via 

y ( H )  t 2 " ' ( H ) f 2 ( Y ( H ) / t $ ( H ) ) .  (12) 
If 4 remains less than 2v, in three dimensions, then 
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If 4 > 2v, then the exponent 2v;’ is replaced by 4-l. If x, = 
t,,, - 10-7cm, K ,  - 1OP6dynes, and v, - +, this implies 

H = 104G, 

t ( H )  10-7. (14) 
The estimate v, - + is crude and may be wrong. In an external electric field, xa H2 is 
replaced by &,E2. With E, - IOcgs and E - 102stat volt/cm, this yields 

t (E )  - (15) 

or T, - T ( E )  - 
These temperatures should be compared with the Ginzburg temperature t, for the 

critical point with H = 0 ( E  = 0). If t ( H )  > t,, ( t (E )  > tG) the transition will be 
mean field-like. If t ( H )  < t, ( t ( E )  < t,), there will be a crossover from mean field 
to critical and then back to mean field theory. At the moment, because of our 
incomplete understanding of the H = 0 transition, we are unable to give a believable 
estimate of t,. Thus, we cannot predict with certainty what the effects of external 
magnetic or electric fields will have on the S,-S,. transitions. Our educated guess is 
that there will be critical fluctuations for experimental external magnetic fields but 
that reasonable electric fields could produce a crossover from critical to mean field 
behavior or even a purely mean field transition. 

Polydomain samples experience strains which we may estimate to be of the order 
of one lattice spacing a divided by the grain size L independent of temperature: 
(V,u) - a/L. These quenched strains create a perturbation whose effect is similar to 
that of an external electric field. The crossover temperature to mean-field behaviour is 
again given by equation (13) with +xaH2 replaced by ~ H , , , , / ~ ( V , U ) ~  N +w2(V2u) 
where wz is the unrenormalized potential of equation (5). With L - lOP4cm and 
w2 N B2 - IO’erg~m-~, we find 

x 400 - 0.4K. 

t((V,u)) - or T, - T((V,u)) - 400 x lo-’ = 4K. (16) 

Thus, quenched strains present in polycrystalline samples may explain the mean-field 
character of the results of [4]. 

In conclusion, we have studied the S,-S,. critical point in the presence of an 
external magnetic (electric) field with positive magnetic (dielectric) anisotropy. We 
showed that its upper critical dimensions d, is 5 rather than the zero-field value of 6. 
Thus, this critical point in physical three-dimensional systems in a field should exhibit 
mean-field behaviour for temperatures sufficiently close to T, . The reduced tem- 
perature at which mean field behaviour sets in are estimated to be lo-’ for magnetic 
fields of lo4 G, for electric fields of 10’stat volts/cm, and lo-’ for residual strains 
of order 3 x 
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